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Abstract

The basic problem of order reduction of nonlinear systems with time periodic coefficients is considered.
First, the equations of motion are transformed using the Lyapunov–Floquet transformation such that the
linear parts of new set of equations are time invariant. At this stage, the linear order reduction technique
can be applied in a straightforward manner. A nonlinear order reduction methodology is also suggested
through a generalization of the invariant manifold technique via ‘Time Periodic Center Manifold Theory’. A
‘reducibility condition’ is derived to provide conditions under which a nonlinear order reduction is possible.
Unlike perturbation or averaging type approaches, the parametric excitation term is not assumed to be
small. An example consisting of two parametrically excited coupled pendulums is given to show potential
applications to real problems. Order reduction possibilities and results for various cases including
‘parametric’, ‘internal’, ‘true internal’ and ‘combination’ resonances are discussed.
r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

Many structural systems are modeled using the finite element technique. In this process, the
dynamic response problem is reduced to a large set of differential equations. These equations may
be linear or nonlinear where nonlinearities can arise from geometry or material behavior. An
see front matter r 2004 Elsevier Ltd. All rights reserved.

jsv.2004.07.027

ding author. Tel.: +1 334 844 3325; fax: +1 334 844 3307.

ress: ssinha@eng.auburn.edu (S.C. Sinha).

www.elsevier.com/locate/jsvi


ARTICLE IN PRESS

S.C. Sinha et al. / Journal of Sound and Vibration 284 (2005) 985–1002986
important class of problems gives rise to a large number of equations with time varying
coefficients. For the purpose of modal analysis, control and model testing, only a few dominating
modes are important. Therefore, reduced order models that approximate the dynamics of original
large-scale system, using linear as well as nonlinear reduction techniques, are needed.
Several linear approaches have been proposed to construct reduced order models for time

invariant systems (of dimension r) that approximate the dynamics of the actual higher-order
system of dimension n. The response of the reduced order model of dimension r ð5nÞ is equivalent
to the original large-scale system in some desired sense [1]. One of the techniques that developed
primarily within the discipline of finite element analysis is called the ‘Guyan reduction’ [2]. This is a
linear static reduction procedure, which provides a reduced order model with coordinates that are
a subset of the original coordinate system. Recently, ‘Guyan reduction’ has been modified to
account for inertia as well as stiffness properties. Other linear reduction methods, such as the
internal balancing technique, are accomplished in state-space form and are more common to
control applications. Other techniques related to control are described by Shokoohi et al. [3].
Guyan-like methods, while exact for linear systems, may also be applied to nonlinear systems, in
which case the order reduction transformation is correct only for the linear terms. While such a
linear strategy may yield acceptable results, the effects of the nonlinear terms are neglected in the
order reduction process.
In order to construct a nonlinear order reduction technique for nonlinear systems, the concept

of nonlinear normal modes (NNMs) may be utilized. As suggested by Shaw and Pierre [4], the
nonlinear normal modes are defined as motions occurring on invariant manifolds, which are
generally tangent to the corresponding eigenvectors of the linearized system at the equilibrium
position and can be obtained analytically in a series form by various techniques [5]. The
invariance property ensures that any motion starting exactly in a given modal manifold will
remain in that manifold. One may perform a nonlinear modal analysis in order to obtain the
system response in terms of some nonlinear modal coordinates. Model reduction using the
nonlinear modal coordinates is advantageous because one may use fewer nonlinear normal modes
than linear ones to perform equally accurate modal analysis of nonlinear systems. The order
reduction methods may be carried out in state-space [6] or in second-order (structural) form [7]. In
a recent paper, Burton and Rhee [8] suggested a nonlinear normal mode based order reduction
method in structural form and compared it with linear reduction procedure for time invariant
system.
In most cases, the original large-scale system of equations contains constant coefficients and

methods discussed above can be used for order reduction. However, a very important class of
problems, such as the dynamics of rotating systems, like helicopter blades, asymmetric rotor-
bearing systems, and structures subjected to periodic loadings, etc., gives rise to equations with
time periodic coefficients. Recently, order reduction techniques for linear time periodic systems
have been reported using approximate multipoint Krylov techniques and time varying Padé
approximation [9] from a control system perspective.
In the area of structural dynamics of time varying linear and nonlinear systems, very little work

has been reported. In an isolated study [10], modal analysis and order reduction was performed on
a rotor dynamic problem without taking into account the contribution of periodic terms. In
general, such reduced models cannot portray the correct dynamics of the original periodic
systems, to say the least. For a more meaningful approach, the contribution of periodic terms
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must be included in the transformation matrix. This may be accomplished by the use of
Lyapunov–Floquet (L–F) transformation that converts the time varying linear system matrix into
an equivalent time invariant form. The details of computation and application of L–F
transformation can be found in Refs. [11,12]. Deshmukh et al. [13] recently applied this concept
to develop an order reduction technique and control strategy for large-scale time periodic systems.
Control laws based on modal analysis and aggregations were developed in the original
coordinates by applying well-known control strategies to the reduced system in the transformed
domain. A similar approach to nonlinear time periodic system may not yield acceptable results.
Very recently, Sinha et al. [14] have indicated that a nonlinear order reduction is possible for

time periodic systems through an application of L–F transformation and invariant manifold
concept. As in the case of ‘Time Periodic Center Manifold Theory’, where ‘stable’ states are
expressed as periodically modulated functions of ‘critical’ states, we propose to express the ‘slave’
(non-dominant) states as nonlinear functions of the ‘master’ (dominant) states. This is a
generalization of the idea suggested by Shaw and Pierre [4] for the autonomous systems. The
approach here implies the existence of invariant manifolds for the time-periodic dynamical
systems.
The paper is divided into five sections. In Section 2, an introduction of Floquet theory and L–F

transformation is presented while Section 3 outlines the general order reduction procedure. An
example is presented in Section 4, which demonstrates the application and comparison with linear
order reduction methodology. Discussion and conclusions are presented in Section 5.
2. Floquet theory and L–F transformation

Consider the linear periodic system

_xðtÞ ¼ AðtÞxðtÞ; Aðt þ TÞ ¼ AðtÞ; (1)

where xðtÞ is an n vector and AðtÞ is an n � n periodic matrix with the principal period T.
The state transition matrix (STM) UðtÞ of Eq. (1) can be factored as [15]

UðtÞ ¼ QðtÞeRt; QðtÞ ¼ Qðt þ 2TÞ; Qð0Þ ¼ I; (2)

where the matrix QðtÞ is real and periodic with period 2T ; R is an n � n real time invariant matrix
and I is the identity matrix. Matrix QðtÞ is known as the L–F transformation matrix [11].
The transformation xðtÞ ¼ QðtÞzðtÞ produces a real time invariant representation given by

_zðtÞ ¼ RzðtÞ: (3)

Thus, the nonlinear equation

_xðtÞ ¼ AðtÞxðtÞ þ fðx; tÞ (4)

may be converted to an equivalent form given by

_z ¼ RzþQ�1ðtÞfðz; tÞ: (5)

It is to be noted that the matrix R; shown in Eq. (5), is time invariant.
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3. Model order reduction techniques

3.1. The linear method

Now consider a multidimensional system described by a set of second-order nonlinear
differential equations with time periodic coefficients as

MðtÞ€yþ CðtÞ_yþ KðtÞyþ Fðy; _y; tÞ ¼ 0; (6)

where y is an m vector and MðtÞ;CðtÞ;KðtÞ are time periodic m � m ðm ¼ n=2Þ matrices. CðtÞ ¼
DðtÞ þGðtÞ; where DðtÞ and GðtÞ are damping (symmetric) and gyroscopic (asymmetric) matrices,
respectively, and Fðy; _y; tÞ is a nonlinear vector function such that Fð0; 0; tÞ ¼ 0: The system
described by Eq. (6) can be expressed as a set of n ð¼ 2mÞ first-order equations given by

_xðtÞ ¼ AðtÞxðtÞ þ fðx; tÞ; (7)

where

AðtÞ ¼
0 I

�M�1ðtÞKðtÞ �M�1ðtÞCðtÞ

" #
:

I and 0 are m � m identity and null matrices, respectively, and x is an n vector of the states and
fðx; tÞ is a nonlinear time periodic n vector such that fð0; tÞ ¼ 0:
Applying the L–F transformation xðtÞ ¼ QðtÞȳðtÞ produces

_̄yðtÞ ¼ RȳðtÞ þQ�1ðtÞfðȳ; tÞ; (8)

where QðtÞ is the L–F transformation matrix of dimension n � n:
After the modal transformation, ȳðtÞ ¼MzðtÞ; we have

_zðtÞ ¼ JzðtÞ þM�1Q�1ðtÞfðz; tÞ � JzðtÞ þ wðz; tÞ; (9)

where J is the Jordan form of R and wðz; tÞ represents an appropriately defined nonlinear time
varying vector consisting of monomials of zj: The objective of order reduction is to replace the
nonlinear time periodic system given by Eq. (9) by an equivalent system given by

_zrðtÞ ¼ JrzrðtÞ þ w̄rðzr; tÞ; (10)

where zr is an r ðr5nÞ vector of the dominant states to be retained, Jr is an r � r Jordan block
corresponding to the dominant states and w̄rðzr; tÞ is a nonlinear vector function of appropriate
dimensions consisting only of the dominant states.
At this stage Eq. (9) may be partitioned as

_zr

_zs

( )
¼
Jr 0

0 Js

" #
zr

zs

( )
þ
wrðzr; zs; tÞ

wsðzr; zs; tÞ

( )
(11a,b)

where zs is an ðn � rÞ vector of non-dominant states, Js is the Jordan block of dimension
ðn � rÞ � ðn � rÞ corresponding to the non-dominant states and wrðzr; zs; tÞ and wsðzr; zs; tÞ consist
of the monomials of z (of order i) with periodic coefficients. In the linear approach, the
contribution of the non-dominant states is considered insignificant and hence neglected. Thus, by
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neglecting Eq. (11b), the entire system dynamics is approximated by

_zrðtÞ ¼ JrzrðtÞ þ wrðzr; zs; tÞ: (12)

Eq. (12) is further approximated by setting the non-dominant states to zero ðzs ¼ 0Þ; which yields

_zrðtÞ ¼ JrzrðtÞ þ wrðzr; 0; tÞ: (13)

Eq. (13) is the reduced order model of the actual large-scale system described by Eq. (9). Eq. (13)
can be integrated numerically and using the transformation xðtÞ ¼ QðtÞMTzrðtÞ; where T ¼

½Ir�r 0r�ðn�rÞ	
T; all the states in x can be recovered.

The linear technique is simple and easy to implement. However, it does not give a clear insight if
the dynamics is complex and involves internal and/or parametric resonance. The approximation
error is larger and sometimes the results could be misleading.

3.2. Order reduction using time periodic invariant manifold

This methodology is based on the concept of invariant manifold for time-periodic systems. It
implies that there exists a nonlinear time periodic relationship between dominant and non-
dominant states, and therefore it is possible to reduce a large-scale system to a smaller system
represented only by the dominant (master) states.
Consider the nonlinear time periodic system given by Eq. (11a,b). In this approach, a nonlinear

relationship is assumed between the non-dominant ðzsÞ and dominant ðzrÞ states as

zs ¼
X

i

hiðzr; tÞ � Hðzr; tÞ; (14)

where

hi ¼
X
m̄

h̄iðtÞz
m1

1 . . . zmr
r ; m̄ ¼ ðm1; . . . ;mrÞ

T; m1 þ 
 
 
 þ mr ¼ i; i ¼ 2; 3; . . . ; k: (15)

Here h̄iðtÞ are the unknown periodic vector coefficients with period 2T : Substitution of Eq. (14)
into Eq. (11a,b) yields

qH
qt

þ
qH
qzr

ðJrzr þ wrÞ ¼ JsHþ ws: (16)

At this point, it should be observed that, if we consider the ith orderH in the above equation, then
ws has to be approximated to the ith order as well, and we represent this by wsi:However, all terms
in ðqH=qzrÞwr are of the order i þ 1 or higher. Therefore, neglecting this product, we obtain

qH
qt

þ
qH
qzr
Jrzr � JsH ¼ wsi: (17)

In order to solve this partial differential equation approximately, we expand the known and the
unknown periodic coefficient functions (h̄iðtÞ) into finite Fourier series as

hiðzr; tÞ ¼
Xs

j¼1

X
m̄

X1
n¼�1

hjm̄n e
īnpt=T jzrj

m
ej; (18)
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wsiðzr; tÞ ¼
Xs

j¼1

X
m̄

X1
n¼�1

ajm̄ne
īnpt=T jzrj

m
ej; (19)

where jzrj
m
 ¼ zm1

1 zm2

2 . . . zmr
r ; ī ¼

ffiffiffiffiffiffiffi
�1

p
;m1 þ 
 
 
 þ mr ¼ i; i ¼ 2; 3; . . . ; k: ajm̄n are the known Four-

ier coefficients of the periodic functions, whereas hjm̄n are the unknown Fourier coefficients of the
manifold relation and ej is the jth member of the natural basis. A term-by-term comparison of the
Fourier coefficients yields

hjmn ¼
ajmn

ðīnp=TÞ þ
Pr

l¼1 ðmlllÞ � l̄p

; (20)

where l1; l2; . . . ; lr are the eigenvalues of the Jordan matrix Jr and l̄p; p ¼ 1; 2; . . . ; s are the
eigenvalues of Js: Therefore, the ‘reducibility condition’ is expressed as

īnp
T

þ
Xr

l¼1

ðmlllÞ � l̄pa0 8n ¼ 0;�1;�2 . . . ; p ¼ 1; 2; . . . ; s: (21)

It is obvious that if the ‘reducibility condition’ is satisfied then the vector Hðzr; tÞ can be obtained
and the ‘slave’ states can be expressed in terms of the ‘master’ states. However, when this
condition is not satisfied, such a reduction is not possible and ‘slave’ coordinates cannot be
expressed as functions of ‘master’ coordinates.
For n ¼ 0; a resonance occurs when some linear combination of ll (frequencies of the ‘master’

states) and l̄p (frequencies of the ‘slave’ states) add up to zero. This may be referred to as the ‘true
internal resonance’. If the second-order system given by Eq. (6) is autonomous (i.e., M ð¼

MTÞ; C; K ð¼ KTÞ and f do not explicitly depend on time t) and D is identically zero, then
ln ¼ �ion (where on are the natural frequencies corresponding to the original coordinates in y),
and Eq. (21) provides conditions for the conventional ‘internal resonance’ widely discussed in the
literature. Shaw et al. [6] derived such conditions for the special case of quadratic and cubic
nonlinearities using MathematicaTM: It can be easily verified that their result is a sub set of the
results contained in Eq. (21). For na0; the denominator in Eq. (20) goes to zero when the
parametric excitation frequency o ð¼ 2p=TÞ is a linear combination of ll and l̄p: This situation is
referred to as the ‘true combination resonance’ case. Further, let us look at a special form of Eq. (6)
such that MðtÞ ¼ ½M0 þ �M1ðtÞ	; CðtÞ � GðtÞ ¼ ½G0 þ �G1ðtÞ	; KðtÞ ¼ ½K0 þ K1ðtÞ	 and Fðy; _y; tÞ ¼
�Fðy; _y; tÞ: It is interesting to observe that if the coefficients ð�Þ of parametric excitation and
nonlinear terms are small, then the eigenvalues ln ! �ion; and from Eq. (20) we recover the
condition for conventional ‘combination resonance’ in parametrically excited nonlinear systems
with a small parameter [16]. The concept of ‘parametric resonance’ comes from the stability
analysis of linear systems with time periodic coefficients. In this case at least one pair of Floquet
multipliers is repeated. For a single degree of freedom system, the repeated multipliers have to be
real and repeated as �1 or +1. This implies that at least one pair of eigenvalues of the Jr matrix
has a zero value. For multiple degrees of freedom systems, two pairs of Floquet exponents have to
be purely imaginary and repeated. For systems with small parametric excitation terms (as
discussed above), it takes the form of sum and difference type of resonance conditions. The details
may be found in Refs. [17,18]. If Jr matrix contains a pair of zeros (critical eigenvalues), then the
order reduction process necessarily boils down to finding a time-periodic center manifold relation
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between the ‘slave’ and the ‘master’ states. Since Floquet multipliers are either �1 or +1, the
system undergoes a ‘flip’ or a symmetry breaking (or transcritical) bifurcation, respectively. The
reduced order model does not contain any linear terms; it is strictly a nonlinear model. Once
Hðwr; tÞ has been determined, we obtain the equation for the ‘master’ states zr as

_zr ¼ Jrzr þ w̄rðzr;Hðzr; tÞ; tÞ: (22)

This is the reduced order system in the z domain. Now we can make use of the L–F
transformation matrix QðtÞ and the modal matrix M to map the results back to the original ðxÞ
domain. Since this transformation is a Lyapunov transformation, all stability properties are
preserved and the existence of invariant manifold is guaranteed.
4. Applications

The techniques proposed in Section 3 can be effectively applied to reduce the order of practical
engineering structures modeled by nonlinear differential equations with time periodic coefficients.
To demonstrate possible practical applications, we reduce the order of a system consisting of two
inverted coupled pendulums moving in the horizontal plane with time-dependent load acting on
each pendulum. Each pendulum is supported at the base by a torsional spring. The loading
consists of time periodic concentrated axial loads. The structural diagram of the system
considered is shown in Fig. 1. The equations of motion can be shown to be

ml2 €y1 þ kt1y1 þ k
l2

4
q1ðy1; y2Þ � P1ðtÞ sin y1 ¼ 0; (23a)
Fig. 1. Coupled pendulums.
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ml2 €y2 þ kt2y2 þ k
l2

4
q2ðy1; y2Þ � P2ðtÞ sin y2 ¼ 0; (23b)

where q1ðy1; y2Þ and q2ðy1; y2Þ are nonlinear functions of ðy1 � y2Þ;P1ðtÞ ¼ P11 þ P12 cosðotÞ
and P2ðtÞ ¼ P21 þ P22 cosðotÞ: m; l; kt and k denote mass, length, torsional stiffness and
coupling stiffness, respectively. The local dynamics can be obtained by expanding these global
equations of motion about the fixed point ðy1; y2; _y1; _y2Þ ¼ ð0; 0; 0; 0Þ: The linearized equations can
be written as

€y1 þ
kt1

ml2
y1 þ

k

4m
ðy1 � y2Þ �

P11l

ml2
þ

P12l

ml2
cosðotÞ

� 	
ðy1Þ ¼ 0;

€y2 þ
kt1

ml2
y2 þ

k

4m
ðy2 � y1Þ �

P21l

ml2
þ

P22l

ml2
cosðotÞ

� 	
ðy2Þ ¼ 0: (24)

On the other hand, if terms up to the cubic order are retained then these equations may be
approximated as

€y1 þ
kt1

ml2
y1 þ

k

4m
½c1ðy1 � y2Þ þ c2ðy1 � y2Þ

2
þ c3ðy1 � y2Þ

3
	

�
P11l

ml2
þ

P12l

ml2
cosðotÞ

� 	
y1 �

y31
6


 �
¼ 0;

€y2 þ
kt2

ml2
y2 þ

k

4m
½c1ðy2 � y1Þ þ c2ðy2 � y1Þ

2
þ c3ðy2 � y1Þ

3
	

�
P21l

ml2
þ

P22l

ml2
cosðotÞ

� 	
y2 �

y32
6


 �
¼ 0; ð25Þ

where c1; c2; c3 are coupling parameters. Setting P11 and P21 equal to zero, Eq. (25) can be
written as

€y1 þ ðo2
n1
� �p1 cosðotÞÞy1 þ �p1 cosðotÞ

y31
6
� by2 � cðy1 � y2Þ

2
� dðy1 � y2Þ

3
¼ 0; (26a)

€y2 þ ðo2
n2
� �p2 cosðotÞÞy2 þ �p2 cosðotÞ

y32
6
� by1 þ cðy1 � y2Þ

2
þ dðy1 � y2Þ

3
¼ 0; (26b)

where

o2
n1
¼

kt1

ml2
þ

k

4m
c1

� 	
; o2

n2
¼

kt2

ml2
þ

k

4m
c1

� 	
; �p1 ¼

P12l

ml2
; �p2 ¼

P22l

ml2
; o ¼ 2p;

b ¼
k

4m
c1; c ¼

k

4m
c2; d ¼

k

4m
c3:
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Eq. (26) can be written in the state space form as

_x1

_x2

_x3

_x4

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

¼

0 0 1 0

0 0 0 1

�ðo2
n1
� �p1 cosðotÞÞ b 0 0

b �ðo2
n2
� �p2 cosðotÞÞ 0 0

2
6666664

3
7777775

x1

x2

x3

x4

8>>>>><
>>>>>:

9>>>>>=
>>>>>;

þ

0

0

��p1 cosðotÞ
x3
1

6
þ cðx1 � x2Þ

2
þ dðx1 � x2Þ

3

��p2 cosðotÞ
x3
2

6
� cðx1 � x2Þ

2
� dðx1 � x2Þ

3

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; ð27Þ

where

fx1 x2 x3 x4g
T ¼ fy1 y2 _y1 _y2gT: (28)

Applying the L–F transformation, Eq. (27) may be written as

_̄y ¼ RȳþQ�1ðtÞfðȳ; tÞ; (29)

where ȳ ¼ fȳ1 ȳ2 ȳ3 ȳ4g
T and R is a 4� 4 time invariant matrix. By choosing a suitable set of

values of coupling parameters ðb; c; dÞ; the system can be made to undergo ‘parametric resonance’,
(3:1 and 2:1), ‘internal resonance’, ‘true internal resonance’ or ‘true combination resonance’.
These resonances are discussed in the context of this example.
4.1. Case 1: no resonance of any kind

The system parameters are chosen such that the system does not exhibit ‘internal resonance’,
‘true internal resonance’ or ‘true combination resonance’. These parameters are given in Table 1.
For this set of parameters, the Floquet multipliers are given as ð�0:51� 0:85i;�0:88� 0:45iÞ: The
L–F transformation matrix QðtÞ is computed from the linear part of Eq. (27) by the method
suggested by Sinha et al. [11]. The R matrix corresponding to Eq. (29) is found to be

R ¼

0:001 0 �0:307 �0:053

0 0 �0:053 �0:093

3:311 0:127 0 0

0:127 2:804 0 0

2
6664

3
7775: (30)
Table 1

Parameter set for the case when no parametric/internal resonance exists

Parameter o2
n1

o2
n2

�p1 �p2 o b c d

Value 3.5 5.5 5 5 2p 0.5 0 1.5
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The Floquet exponents (eigenvalues of R matrix) are ð�0:47i;�1:03iÞ: It can be easily verified that
the ratio of the angles of Floquet multipliers (or the ratio of Floquet exponents) for this set is 2.19,
which implies they are not in ‘true internal resonance’ and the ‘reducibility condition’ given by
Eq. (21) is satisfied.
Using the modal transformation

y ¼Mz; (31)

where M is the 4� 4 modal matrix of R obtained by solving the eigenvalue problem and z ¼
fz1 z2 z3 z4g

T: Eq. (29) can be written explicitly as

_z1

_z2

_z3

_z4

8>>><
>>>:

9>>>=
>>>;

¼

0 �0:47 0 0

0:47 0 0 0

0 0 0 �1:03

0 0 1:03 0

2
6664

3
7775

z1

z2

z3

z4

8>>><
>>>:

9>>>=
>>>;

þ

w1ðz; tÞ

w2ðz; tÞ

w3ðz; tÞ

w4ðz; tÞ

8>>>><
>>>>:

9>>>>=
>>>>;
; (32)

where wiðz; tÞ are nonlinear functions with periodic coefficients comprising of all the states.
The long expressions for wiðz; tÞ are obtained usingMathematicaTM and omitted here for brevity.
At this stage, we reduce the order of the system given by Eq. (32) using methods described in
Section 3.

4.1.1. Order reduction using linear method
Eq. (32) comprises of 4 states fz1 z2 z3 z4g

T; out of those 4 states. We choose zr ¼ fz1 z2g
T

as the dominant states; they correspond to the lowest eigenvalues of the system. By neglecting
the contribution from the non-dominant states zs ¼ fz3 z4g

T; the system dynamics can be
expressed as

_z1

_z2

( )
¼

0 �0:47

0:47 0

� 	
z1

z2

( )
þ

w1ðz1; z2; z3; z4; tÞ

w2ðz1; z2; z3; z4; tÞ

( )
: (33)

This system is further approximated by setting z3; z4 to zero to obtain

_z1

_z2

( )
¼

0 �0:47

0:47 0

� 	
z1

z2

( )
þ

w1ðz1; z2; 0; 0; tÞ

w2ðz1; z2; 0; 0; tÞ

( )
; (34)

Eq. (34) is the reduced order model of the system described by Eq. (32), obtained using the
linear method. This reduced order system is integrated numerically with some typical initial
conditions and all the states in x ¼ fy1 y2 _y1 _y2gT are obtained using L–F and the modal
transformations. In Fig. 2(a), the time trace of _y1 obtained using the above procedure is
compared with the time trace of _y1 obtained by integrating the original Eq. (27). It can be seen
that these time traces match well but not exactly. To portray the results from long
time simulations, we plot the Poincaré maps of the original large-scale system and the reduced
order system sampled at the frequency of parametric excitation. In Fig. 3(a), the Poincaré
map of large-scale system is shown, and Fig. 3(b) shows the Poincaré map of reduced system using
the linear method. The Poincaré map of the large-scale system shows a ‘band’ implying the
existence of quasiperiodic motion. This ‘band’ is not so dominant in the map of the reduced
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Fig. 2. Comparison of time traces of ‘master velocities’: (a) _y1; ——-; _y1ðlinear reductionÞ; – –, (b) _y1; ——-;
_y1ðinvariant manifold reductionÞ – – .

(c)

(b)(a) 1Θ

0 0.040.02−0.02−0.04

1Θ

0 0.040.02−0.02−0.04

1Θ

1
Θ 0

−0.15

−0.1

−0.05

0.05

0.1

0.15

1
Θ 0

−0.15

−0.1

−0.05

0.05

0.1

0.15

1
Θ

0

0

−0.15

−0.1

0.040.02−0.02−0.04

−0.05

0.05

0.1

0.15
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S.C. Sinha et al. / Journal of Sound and Vibration 284 (2005) 985–1002 995
system using the linear method (the simulation time is same for both). These maps do not match
exactly in magnitude as well. Thus, we conclude that the linear method does not yield an accurate
reduced order model, at least for this particular case.
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4.1.2. Order reduction using invariant manifold

As discussed in Section 3.2 we try to relate the non-dominant (slave) states to the dominant
(master) states by a time periodic nonlinear transformation. If the system does not exhibit ‘true
internal resonance’ (like the case under consideration) then the ‘reducibility condition’ is satisfied
and the system order can be reduced.
Once again, we start with Eq. (32) and choosing same states, zr ¼ fz1 z2g

T as the dominant
states, try to find a nonlinear time periodic relationship between the dominant and the non-
dominant states as given by Eq. (14). The relationship between zs and zr is expressed as

zs ¼
X

i

hiðz1; z2; tÞ � Hðz1; z2; tÞ; s ¼ 3; 4; (35)

where

hi ¼
X
m̄

h̄iðtÞz
m1

1 . . . zm2

2 ; m̄ ¼ ðm1;m2Þ
T; m1 þ m2 ¼ 3: (36)

Here h̄iðtÞ are the unknown periodic vector coefficients with period 2T :We substitute Eq. (35) into
Eq. (32). After expanding h̄iðtÞ and wsðzr; tÞ s ¼ 3; 4 in Fourier series, and neglecting the terms of
higher order, we obtain the relationship between the dominant and the non-dominant states as

z3 ¼ z1z
2
2ð0:013� 0:012 cosð2ptÞÞ þ z31ð0:048� 0:044 cosð2ptÞ þ 0:001 cosð4ptÞÞ

þ z32ð0:041 sinð2ptÞÞ þ z21z2ð�0:022 sinð2ptÞ þ 0:014 sinð4ptÞÞ ¼ H1ðz1; z2; tÞ;

z4 ¼ z1z
2
2ð0:094� 0:021 cosð2ptÞ � 0:055 cosð4ptÞÞ þ z32ð0:061Þ þ z31ð�0:017 sinð2ptÞ

� 0:063 sinð4ptÞÞ þ z2z
2
1ð�0:023 sinð2ptÞ � 0:012 sinð4ptÞÞ ¼ H2ðz1; z2; tÞ: ð37Þ

Eq. (37) is substituted into top half of Eq. (32) and the reduced order model is obtained as

_z1

_z2

( )
¼

0 �0:47

0:47 0

� 	
z1

z2

( )
þ

w̄1ðz1; z2; tÞ

w̄2ðz1; z2; tÞ

( )
: (38)

This symbolic computation was carried out using MathematicaTM and the explicit long
expressions are omitted here for brevity. As earlier, Eq. (38) is solved numerically and again by
making use of L–F and modal transformations, all components of vector x can be constructed.
The time trace of _y1 (Fig. 2(b)) obtained by this method is compared with the time trace of _y1
obtained by numerical integration of the original equation given by Eq. (27). As we can see, the
two time traces match quite well. The Poincaré map of the original system (given by Fig. 3(a))
matches the Poincaré map of the reduced order system (given by Fig. 3(c)) quantitatively. It can
also be observed that the ‘band’ in the Poincaré maps of the original system is approximated by 2
loops representing the most dominant frequencies in the quasiperiodic motion of the system
dynamics.
The spectral plots corresponding to the original large-scale system and the reduced order

systems by linear and invariant manifold methods are given in Figs. 4(a)–(c), respectively. It can
be seen that all these spectral plots show two peaks corresponding to the dominant frequencies in
the quasiperiodic motion exhibited by the system. However, the spectral plot of invariant
manifold based reduced system (Fig. 4(c)) matches more accurately to the spectral plot of the
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Fig. 4. Spectral plots for the ‘no resonance’ case: (a) large-scale system, (b) reduced order system via linear method, (c)

reduced order system via nonlinear method.

Table 2

Parameter set for the case when parametric resonance exists

Parameter o2
n1

o2
n2

�p1 �p2 o b c d

Value 355.3 20 5 5 2p 0 0 1
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original system (Fig. 4(a)) than the reduced system obtained by the linear method (Fig. 4(b)) in
magnitude. Therefore, we conclude that the invariant manifold order reduction technique yields
better results when compared to the linear method.

4.2. Case 2: parametric resonance

As discussed in Section 3.2, if the parameter (�) multiplying the periodic term of an undamped
system is small and a pair of Floquet multipliers is real and repeated, then a ‘parametric
resonance’ takes place. It is well known that the ‘principal parametric resonance’ corresponds to
the case when the parametric excitation frequency o and one of the natural frequencies oni satisfy
the ratio of 2:1. This case is known to be unstable. For numerical simulations, we choose the
parameters given in Table 2. It can be seen as the linear coupling term is zero (i.e., b ¼ 0) and the
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linear part of each equation in (26) resembles a Mathieu equation. By selecting on1 ’ 3o; we
observe that Eq. (26a) (equation in y1) indicates (1:3) resonance and the system is ‘mildly’
unstable. The Floquet multipliers are: ð0:99; 0:99;�0:27þ 0:96i;�0:27� 0:96iÞ: After the L–F and
the modal transformation the system is given by

_z1

_z2

_z3

_z4

8>>><
>>>:

9>>>=
>>>;

¼

0 0 0 0

0 0 0 0

0 0 0 �1:29

0 0 1:29 0

2
6664

3
7775

z1

z2

z3

z4

8>>><
>>>:

9>>>=
>>>;

þ

w1ðz; tÞ

w2ðz; tÞ

w3ðz; tÞ

w4ðz; tÞ

8>>>><
>>>>:

9>>>>=
>>>>;
: (39)

The zero entries (top left 2� 2) in Eq. (39) correspond to the resonant mode and wiðz; tÞ are
nonlinear functions of states as defined earlier.

4.2.1. Order reduction using the linear method
This problem clearly shows the limitation of the linear method. Here the reduced order model

obtained using linear method does not yield acceptable results due to the fact that the major
contribution in the dynamics comes from the nonlinear terms and this method eliminates the
significant contribution regardless of which variables are selected as dominant states. It occurs
here due to the fact that this problem has no linear coupling and L–F and the modal
transformations assume special forms.

4.2.2. Order reduction using invariant manifold

It can be shown that the ‘reducibility condition’ for this problem is satisfied and order reduction
is possible. Here, one may choose the resonant or the non-resonant modes as the states to be
retained and eliminate the other modes. The resulting reduced order system exhibits very
interesting and complex dynamics. If we choose (y1; _y1) (the resonant mode) as the ‘master’
coordinates then we are essentially performing a center manifold reduction. The Poincaré maps
for large-scale system and the reduced order system are shown in Fig. 5. They show a simple
quasiperiodic motion due to the fact that in the z domain a limit cycle is born after this mode has
gone through a symmetry breaking bifurcation. The limit cycle is shown in Fig. 7(a). Similar
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Fig. 5. Poincaré maps when ‘resonant modes’ are selected as ‘master’ coordinates: (a) large-scale system, (b) reduced

order system via nonlinear method.
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Fig. 7. Phase plane plot of master coordinates in ‘z domain’: (a) ‘resonant modes’ are selected as the ‘master’

coordinates, (b) ‘non-resonant modes’ are selected as the ‘master’ coordinates.
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Fig. 6. Poincaré maps when ‘non-resonant modes’ selected as ‘master’ coordinates: (a) large-scale system, (b) reduced

order system via nonlinear method.
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results are obtained if we select (y2; _y2) (non-resonant modes) as the ‘master’ coordinates and the
results are shown in Fig. 6. The limit cycle in z domain corresponding to this mode is shown in
Fig. 7(b).
For a general case when the quadratic coupling exists ðca0Þ; it can be shown that the

‘reducibility condition’ is satisfied only when the resonant modes are selected as ‘master
coordinates’ (see Ref. [19] for details).

4.3. Case 3: ‘true internal resonance’

In the case of ‘true internal resonance’, there exists an irremovable coupling among the system
states, the ‘reducibility condition’ is not satisfied, and it is not possible to obtain a relationship
between the dominant and the non-dominant states. For illustration, we select the system
parameters as given in Table 3. For this set of parameters, the Floquet multipliers are ð�0:96�
0:26i; 0:57� 0:81iÞ and the eigenvalues of R matrix are given by ð�0:95i;�2:86iÞ: It is also to be
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Table 3

Parameter values for the case when ‘true internal resonance’ exists

Parameter o2
n1

o2
n2

�p1 �p2 o b c d

Value 4.5 4 0.1 4.5 2p 3.5 0 1
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observed that the H vector has the form

Hj ¼ a1jðtÞz
3
1z

0
2 þ a2jðtÞz

2
1z

1
2 þ a3jðtÞz

1
1z

2
2 þ a4jðtÞz

0
1z

3
2; j ¼ 3; 4; (40)

where aijðtÞ are periodic functions of time.
In this case, the ‘reducibility condition’ is not satisfied since for n ¼ 0; Eq. (21) yields 3�

0:95i� 2:86i ¼ 0 (note that m1 ¼ 3;m2 ¼ 0; l1; l2 ¼ �0:95i and l̄1; l̄2 ¼ �2:86i). Thus, the modes
cannot be decoupled and order reduction is not possible. Of course, one can always perform a
linear based order reduction that may yield acceptable results for very small initial conditions
when the nonlinear effects are not so significant. However, in general, as the initial conditions are
selected farther from the equilibrium position then none of the order reduction methodologies
yield acceptable results.
5. Discussion and conclusions

In this paper, the order reduction problem of nonlinear systems with time periodic coefficients
is considered. Here, the order reduction techniques are developed in the state space form of system
equations. First, the equations of motion are transformed using the L–F transformation such that
the linear parts of new set of equations are time invariant. At this stage, a linear order reduction
technique is suggested to separate the ‘master’ (dominant) states from the ‘slave’ (non-dominant)
states such that the dynamics of the ‘master’ states is a meaningful approximation of the full-scale
system. A nonlinear order reduction methodology is also proposed through a generalization of the
invariant manifold technique via time periodic invariant manifold theory. A nonlinear time periodic
relationship between the ‘slave’ and the ‘master’ states is suggested and a ‘reducibility condition’ is
derived to determine whether a nonlinear order reduction is possible or not. The ‘reducibility
condition’ also provides more general definitions and interpretations of various types
(‘parametric’, ‘conventional internal’, ‘true internal’, ‘combination’ and ‘true combination’) of
resonances encountered in parametrically excited systems. Unlike perturbation or averaging type
approaches, the parametric excitation term is not assumed small. An example consisting of two
parametrically excited coupled pendulums is given to show possible applications to real
engineering problems. Order reduction possibilities and results for various resonances are
discussed. A Poincaré map is used as a measure to compare the accuracy of the reduced order
models. The authors believe this is important because the Poincaré map truly depicts the long-
term dynamical behavior of the system and is definitely a superior measure than comparing just
the short time traces of the original and the reduced order systems. It is found that nonlinear order
reduction techniques provide accurate approximations (compared to linear methods) of the
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full-scale system in the event when no resonances are occurring. Nonlinear order reduction is not
possible when the system is subjected to either the ‘true internal resonance’ or the ‘true combination
resonance’. In these cases, the ‘reducibility condition’ is not satisfied. One can always try the linear
order reduction approach; however, the results may not be meaningful.
In conclusion, it can be stated that a rigorous technique for order reduction of general linear

and nonlinear dynamical systems with time periodic coefficients is presented. The parametric
terms appearing in the linear parts of system equations are not assumed to be small. A
mathematical condition is also derived to determine whether (or not) a large-scale nonlinear
parametrically excited system can be reduced to a lower order system. Several extensions,
generalizations and applications (in the area of controls) of the methods described in this paper
are in progress.
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